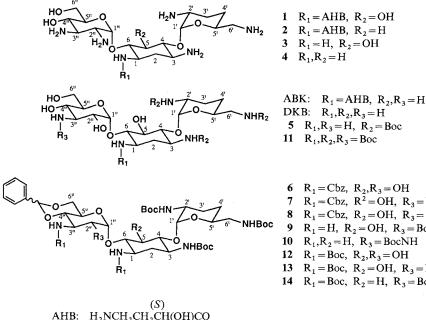
Communication to the Editor


NEW 2"-AMINO DERIVATIVES OF ARBEKACIN, POTENT AMINOGLYCOSIDE ANTIBIOTICS AGAINST METHICILLIN-**RESISTANT** Staphylococcus aureus

Sir:

At the end of 1990, arbekacin (ABK, $1-N-\lceil(S)-$ 4-amino-2-hydroxybutyryl]-3',4'-dideoxykanamycin B)¹⁾ was launched into Japan as a useful chemotherapeutic agent for the treatment of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). By 1992 only a few MRSA strains which were moderately resistant to ABK (MIC, $12.5 \sim 25 \,\mu \text{g/ml}$) were clinically isolated. In a previous paper,²⁾ we reported that ABK was modified by reaction with excess of a crude enzyme preparation extracted from ABK-resistant MRSA $(25\,\mu g/ml)$ and ABK 2"-O-phosphate was afforded as a major inactivated product along with two minor products, 6'-N-acetyl-ABK and the double modified ABK. Based on these results, replacement of the 2"-hydroxyl group by amino group in ABK or in dibekacin (DKB, 3',4'-dideoxykanamycin B)³⁾ was designed to obtain potent derivatives against MRSA. Among known aminoglycoside antibiotics,

only seldomycin factor 5 isolated from the culture of Streptomyces hofunensis contains a 2,3-diamino sugar in the structure.⁴⁾ MCALPINE and colleagues⁵⁾ described that 3'-deoxyseldomycin factor 5 showed a good antibacterial activity. In this communication, we report the synthesis and antibacterial activity of 2"-amino-2"-deoxy-ABK (1), 2"-amino-5,2"-dideoxy-ABK (2), 2"-amino-2"-deoxy-DKB (3) and 2"-amino-5,2"-dideoxy-DKB (4).

Compounds 1 and 2 were synthesized starting from 3,2',6'-tris(*N*-tert-butoxycarbonyl)-DKB (5) which was derived by selective N-protection with tert-butoxycarbonyl (Boc) group.^{6,7)} Subsequent blocking of 5 with benzyloxycarbonyl (Cbz) at 1- and 3"-amino groups and with benzylidene between 4"- and 6"-hydroxyl groups afforded 6 in 58% yield. After the 2"-hydroxyl group of 6 was oxidized to 2"-ulose by PFITZNER-MOFFATT oxidation⁸⁾ (dimethyl sulfoxide, pyridinium trifluoroacetate and dicyclohexylcarbodiimide), reductive amination⁹⁾ of the ulose (ammonium acetate and sodium cyanoborohydride in methanol) exclusively gave 7 having an equatorial 2"-amino group (¹H NMR $(400 \text{ MHz}, \text{CDCl}_3 - \text{CD}_3\text{OD}, 1:1) \delta 2.90 (1\text{H}, \text{ br d},$ $J_{2'',3''} = \sim 10 \text{ Hz}, 2''\text{-H}$). TLC (silica gel, CHCl₃-

H2NCH2CH2CH(OH)CO

Boc: (CH₃)₃COCO Cbz: C₆H₅CH₂OCO

DKB: $R_1, R_2, R_3 = H$ 5 $R_1, R_3 = H, R_2 = Boc$ 11 $R_1, R_2, R_3 = Boc$ $R_1 = Cbz, R_2, R_3 = OH$ $R_1 = Cbz, R^2 = OH, R_3 = NH_2$

 $R_1 = Cbz, R_2 = OH, R_3 = BocNH$

- $R_1 = H, R_2 = OH, R_3 = BocNH$
- $R_1, R_2 = H, R_3 = BocNH$
- $R_1 = Boc, R_2, R_3 = OH$
- $R_1 = Boc, R_2 = OH, R_3 = NH_2$
- $R_1 = Boc, R_2 = H, R_3 = BocNH$

MeOH, 20:1) Rf 0.16). The 2"-amino group of 7 was protected with Boc group to give 8 (23% from 6), $[\alpha]_{\rm D}^{20}$ +33° (c 1, CHCl₃), FD-MS m/z 1,207 (M+H)⁺. Removal of the Cbz groups of 8 by hydrogenation with Pd-C afforded 9. Acylation of 9 with N-hydroxysuccinimide ester of (S)-4-[(pmethoxybenzyl)oxycarbonylamino]-2-hydroxybutyric acid in THF mainly gave a 1-N-acylated product. Treatment of the main product with 90% trifluoroacetic acid followed by column chromatography on Amberlite CG-50 (NH₄⁺) eluted with aq ammonia provided 1 (23% from 8), mp 155~ 160°C (dec), $[\alpha]_{\rm D}^{20}$ +86° (c 0.53, H₂O), SI-MS m/z552 (M+H)⁺.

The deoxygenation of the 5-hydroxyl group in 8 was performed by the radical elimination of dithiocarbonate¹⁰ [i) carbon disulfide, methyl iodide and sodium hydroxide in dimethyl sulfoxide, ii) tributylstannane and 2,2'-azobis(isobutyronitrile) in toluene]. The Cbz groups of the 5-deoxy product were deprotected by hydrogenation to afford 10 (47% from 8). By the similar 1-N-acylation procedure used for 1 from 9, compound 10 was

converted to **2** (50%), mp 196~198°C (dec), $[\alpha]_{\rm D}^{20}$ +92° (c 0.74, H₂O), FD-MS m/z 536 (M + H)⁺.

Compound **3** was synthesized by the similar route described above starting from 1,3,2',6',3"-pentakis-(*N*-Boc)-DKB¹¹ (**11**). Successive treatment of **11** by *O*-benzylidene protection (compound **12**), oxidation of the 2"-hydroxyl group of **12** and reductive amination gave **13** (43% from **11**), $[\alpha]_D^{18} + 48^{\circ}$ (*c* 0.65, CHCl₃ - MeOH, 1:1), ¹H NMR (400 MHz, CDCl₃ - CD₃OD, 1:1) δ 2.90 (1H, dd, $J_{2",3"} = \sim 10$ Hz, $J_{1",2"} = 2$ Hz, 2"-H), SI-MS m/z 1,039 (M+H)⁺. Removal of the protective groups of **13** followed by column chromatography on Amberlite CG-50 (NH₄⁺) gave **3** (99% yield), mp 129~133°C (dec), $[\alpha]_D^{20} + 122^{\circ}$ (*c* 0.39, H₂O), SI-MS m/z 451 (M+H)⁺.

After protection of the 2"-amino group in 13 by Boc group, replacement of the 5-hydroxyl group with sulfuryl chloride in pyridine,¹²⁾ followed by reduction with tributylstannane in dioxane gave 14 (87% from 13). Removal of the protective groups with 90% trifluoroacetic acid followed by column chromatography on Amberlite CG-50 (NH₄⁺) gave

Terteresi	Modifying	MIC (µg/ml)					
Test organism	enzyme	1	2	3	4	ABK	DKB
Staphylococcus aureus FDA209P		0.39	≦0.20	0.78	0.39	0.20	≦0.20
S. aureus Smith		≦0.20	≤0.20	0.39	≦0.20	≦0.20	≤ 0.20
S. aureus MS16526	APH(2")/AAC(6'), AAD(4',4")	1.56	1.56	100	50	12.5	>100
S. epidermidis 109	AAD(4',4")	0.78	0.39	1.56	0.78	0.39	0.78
Bacillus subtilis PCI219		0.20	≤ 0.20	≤0.20	≤ 0.20	≤ 0.20	0.39
B. cereus ATCC 10702		3.13	0.78	3.13	1.56	1.56	1.56
Escherichia coli NIHJ		0.78	0.39	0.78	1.56	0.39	0.39
E. coli K-12 ML1629	APH(3')-I	3.13	1.56	3.13	6.25	0.78	1.56
E. coli K-12 ML1410		1.56	1.56	1.56	3.13	0.78	0.78
E. coli K-12 LA290 R55	AAD(2")	0.78	0.78	1.56	3.13	0.39	50
<i>E. coli</i> JR66/W677	APH(3')-II, AAD(2")	3.13	3.13	3.13	6.25	1.56	50
Klebsiella pneumoniae PCI60	2	1.56	0.78	3.13	3.13	0.78	0.78
Shigella dysenteriae JS11910		3.13	1.56	3.13	6.25	1.56	1.56
Salmonella typhi T-63		0.78	0.78	1.56	3.13	0.39	0.39
Proteus vulgaris OX19		1.56	0.78	1.56	1.56	0.78	0.78
Providencia rettgeri GN311		1.56	0.78	1.56	1.56	1.56	0.39
Providencia sp. Pv16	AAC(2')	3.13	1.56	12.5	12.5	1.56	25
Serratia marcescens		3.13	6.25	12.5	25	12.5	50
Pseudomonas aeruginosa A3		1.56	0.39	1.56	0.78	0.39	0.39
P. aeruginosa H9	APH(3')-II	6.25	3.13	6.25	12.5	3.13	1.56
P. aeruginosa TI-13	APH(3')-I	3.13	1.56	3.13	3.13	1.56	1.56
P. aeruginosa GN315	AAC(6')-4	12.5	50	25	>100	6.25	>100
P. aeruginosa 99	AAC(3)-I	12.5	6.25	6.25	6.25	6.25	3.13
P. aeruginosa 21-75	APH(3')-III	25	25	>100	>100	12.5	>100
P. aeruginosa PST1	AAC(3)-III	12.5	6.25	50	100	6.25	>100

Table 1. Minimum inhibitory concentrations of derivatives.

Table 2. Antibacterial activities against MRSA (50 strains).

Derivative -	MIC (µg/ml)					
	Range	50%	90%			
1	0.20~3.13	0.78	1.56			
2	0.20~3.13	0.78	1.56			
3	$\leq 0.20 \sim 50$	6.25	25			
4	$0.78 \sim 25$	3.13	25			
ABK	$\leq 0.20 \sim 6.25$	0.39	6.25			
DKB	$\leq 0.20 \sim > 100$	50	>100			

MICs were determined by 2-fold agar dilution method at 37° C for 18 hours using Bacto Mueller Hinton Medium (Difco). MRSA isolated clinically from a hospital at Osaka in 1986~1990 (purchased from Takeda Analytical Research Laboratories Ltd.) were used.

4 (88%), mp 129~131°C (dec), $[\alpha]_D^{20}$ + 166° (*c* 0.51, H₂O), SI-MS *m/z* 435 (M + H)⁺.

Minimum inhibitory concentrations of compounds $1 \sim 4$ by 2-fold agar dilution method on Bacto Mueller Hinton Medium (Difco) are shown in Table 1. All 2"-amino derivatives exhibited excellent antibacterial activities and 5-deoxy derivative 2 was strongly active as similar to 5-deoxy-ABK.13) Furthermore, activities of 1 and 2 against both APH(2")/ACC(6')- and AAD(4',4")- producing MRSA^{2,14)} (MS16526 strain) were markedly improved. Compounds 1 and 2 showed the most potent antibacterial activity against 50 strains of clinically isolated MRSA (Table 2). Replacement of hydroxyl group by amino group at C-2" in DKB and in ABK enhanced anti-MRSA activity as expected. Single intravenous administration of 1 or 3 at 100 mg/kg caused no death in mice. While, LD₅₀ values of 2 and 4 were $50 \sim 100 \text{ mg/kg}$.

> Shinichi Kondo Seiji Shibahara[†] Takayuki Usui[†] Toshiaki Kudo[†] Atushi Tamura[†] Shuichi Gomi[†] Yoko Ikeda Daishiro Ikeda Tomio Takeuchi

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

[†]Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222, Japan

(Received December 3, 1992)

References

- KONDO, S.; K. IINUMA, H. YAMAMOTO, K. MAEDA & H. UMEZAWA: Syntheses of 1-N-{(S)-4-amino-2-hydroxybutyryl}-kanamycin B and -3',4'-dideoxykanamycin B active against kanamycin-resistant bacteria. J. Antibiotics 26: 412~415, 1973
- KONDO, S.; A. TAMURA, S. GOMI, Y. IKEDA, T. TAKEUCHI & S. MITSUHASHI: Structures of enzymatically modified products of arbekacin by methicillinresistant *Staphylococcus aureus*. J. Antibiotics 46: 310~315, 1993
- UMEZAWA, H.; S. UMEZAWA, T. TSUCHIYA & Y. OKAZAKI: 3',4'-Dideoxy-kanamycin B active against kanamycin-resistant *Escherichia coli* and *Pseudomo*nas aeruginosa. J. Antibiotics 24: 485~487, 1971
- MCALPINE, J. B.; A. C. SINCLAIR, R. S. EGAN, R. L. DE VAULT, R. S. STANASZEK, M. CIROVIC, S. L. MUELLER, P. C. GOODLEY, R. J. MAURITZ, N. E. WIDEBURG, L. A. MITSCHER, K. SHIRAHATA, H. MATSUSHIMA, S. SATO & T. IIDA: A new aminoglycoside antibiotic complex—the seldomycins. IV. The structure of seldomycin factor 5. J. Antibiotics 30: 39~49, 1977
- 5) MCALPINE, J. B.; R. E. CARNEY, R. L. DEVAULT, A. C. SINCLAIR, R. S. EGAN, M. CIROVIC, R. STANASZEK & S. MUELLER: The effects of O-methylation on the activity of aminoglycosides. *In* Aminocyclitol Antibiotics. *Ed.*, K. L. RINEHART, Jr. & T. SUAMI, pp. 183~196, American Chemical Society, 1980
- 6) TSUCHIYA, T.; Y. TAKAGI & S. UMEZAWA: 1-N-Acylation of aminocyclitol antibiotics via zinc chelation and regiospecific N-trifluoroacetylation. Tetrahedron Lett. 1979: 4951 ~ 4954, 1979
- UMEZAWA, H.; S. UMEZAWA, T. TSUCHIYA, Y. TAKAGI & T. JIKIHARA (Microbial Chemistry Research Foundation): Preparation of aminoglycoside antibiotics selectively protected the amino groups. Jpn. Pat. 1319 ('88), Jan. 12, 1988
- PFITZNER, K. E. & J. G. MOFFATT: Sulfoxidecarbodiimide reactions. I. A facile oxidation of alcohols, J. Am. Chem. Soc. 87: 5661~5670, 1965
- BORCH, R. F.; M. D. BERNSTEIN & H. D. DURST: The cyanohydridoborate anion as a selective reducing agent. J. Am. Chem. Soc. 93: 2897~2904, 1971
- 10) HAYASHI, T.; T. IWAOKA, N. TAKEDA & E. OHKI: Deoxysugar synthesis. IV. Deoxygenation of aminoglycoside antibiotics through reduction of their dithiocarbonates. Chem. Pharm. Bull. 26: 1786~ 1797, 1978
- MIYASAKA, T.; D. IKEDA, S. KONDO & H. UMEZAWA: Syntheses and properties of the 6"-deoxy or 4",6"-dideoxy derivatives of the kanamycin antibio-

tics. J. Antibiotics 33: 527~532, 1980

- SUAMI, T.; S. NISHIYAMA, Y. ISHIKAWA & E. UMEMURA: Modification of aminocyclitol antibiotics.
 Preparation of 5-deoxykanamycin B. Bull. Chem. Soc. Jpn. 51: 2354~2357, 1978
- UMEZAWA, H.; T. MIYASAKA, H. IWASAWA, D. IKEDA & S. KONDO: Chemical modification of 5,3',4'trideoxykanamycin B. J. Antibiotics 34: 1635~1640,

1981

14) KONDO, S.; Y. IKEDA, S. HATTORI, M. HAMADA & T. TAKEUCHI: Susceptibility of methicillin-resistant Staphylococcus aureus to various antibiotics. Classification by aminoglycoside-modifying enzymes and antibiotics active against MRSA. Jpn. J. Antibiotics 44: 1211~1215, 1991